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Abstract

We present a volatility forecasting comparative study within the ARCH class of models.
Our goal is to identify successful predictive models over multiple horizons and to investigate
how predictive ability is influenced by choices for estimation window length, innovation distri-
bution, and frequency of parameter re-estimation. Test assets include a range of domestic and
international equity indices and exchange rates. We find that model rankings are insensitive to
forecast horizon and suggestions for estimation best practices emerge. While our main sample
spans 1990-2008, we take advantage of the near-record surge in volatility during the last half
of 2008 to ask if forecasting models or best practices break down during periods of turmoil.
Surprisingly, we find that volatility during the 2008 crisis was well approximated by predictions
one-day ahead, and should have been within risk managers’ 1% confidence intervals up to one
month ahead.
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1 Introduction

The crash of 2008 has led practitioners and academics alike to reassess the adequacy of our financial

models. Soaring volatilities across asset classes have made it especially important to know how well

our standard tools forecast volatility, especially amid episodes of turmoil that pervade all corners

of the economy. Volatility prediction is a critical task in asset valuation and risk management for

investors and financial intermediaries. The price of essentially every derivative security is affected

by swings in volatility. Risk management models used by financial institutions and required by

regulators take time-varying volatility as a key input. Poor appraisal of the risks to come can

leave investors excessively exposed to market fluctuations or institutions hanging on a precipice of

inadequate capital.

In this work we explore the performance of volatility forecasting within the class of ARCH

models. The paper examines the design features that are involved in the implementation of a real

time volatility forecasting strategy: the type of model, the amount of data to use in estimation,

the frequency of estimation update, and the relevance of heavy-tailed likelihoods for volatility

forecasting. We perform the exercise on a wide range of domestic and international equity indices

and exchange rates. Taking advantage of the near-record surge in volatility during the last half of

2008, we ask if our conclusions regarding forecasting models or estimation strategies change during

tumultuous periods.

The surprising finding that we will report is that there was no deterioration in volatility forecast

accuracy during the financial crisis, even though forecasts are purely out-of-sample. However, this

result is based on one-day ahead forecasts. Most money managers will recognize that one day

advance notice of increasing risk is insufficient for defensive action, particularly in illiquid asset

classes. While longer horizon forecasts exhibited some deterioration during the crisis period, we will

argue that they remained within a 99% confidence interval. An interpretation of this observation is

that there is always a risk that the risk will change. During the crisis, risks radically changed. When

portfolios are formed in a low volatility environment, ignoring variability of risks leads institutions
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to take on excessive leverage.

This should not be interpreted merely as a critique of volatility forecasting but more importantly

as a critique of our most widely used risk measures, value-at-risk and expected shortfall. These

measures inherently focus on short run risk and yet are often used to measure the risk of long-horizon

and illiquid assets. Thus research to supplement these short term risks with a term structure of

risk should be an important goal. We seek to understand how volatilities can change and how to

formulate better long run forecasts.

We find that across asset classes and volatility regimes, the simplest asymmetric GARCH spec-

ification, the threshold GARCH model of Glosten, Jagannanthan & Runkle (1993), is most often

the best forecaster. How much data to use in estimation becomes an important issue if parameters

are unstable since data from the distant past can bias estimates and pollute forecasts. While our

estimates reveal slowly varying movements in model parameters, results show that using the longest

possible estimation window gives the best results. However, even when using long data histories, we

find that models should be re-estimated at least once per week to mitigate the effects of parameter

drift. Finally, despite the documented prevalence of fat-tailed financial returns even after adjusting

for heteroskedasticity (Bollerslev (1987)), we find no benefit to using the heavier-tailed Student

t likelihood in place of the simple Gaussian specification. This is a statement about forecasting

volatility, and does not imply that tail risks should be ignored in risk management.

Our study omits volatility prediction models based on high frequency realized volatility mea-

sures and stochastic volatility models. Important contributions in these areas include Andersen,

Bollerslev, Diebold & Labys (2003), Deo, Hurvich & Lu (2006), Engle & Gallo (2006), Ait-Sähalia

& Mancini (2008), Hansen, Huang & Shek (2010), Corsi (2010), and Shephard & Sheppard (2010),

and Ghysels, Harvey & Renault (1995), among others. While realized volatility models often

demonstrate excellent forecasting performance, there is still much debate concerning optimal ap-

proaches. As a result, a comprehensive comparison of alternative models would be vast in scope and

beyond the bounds of this paper. Our goal is to document how estimation choices impact forecast

performance, especially comparing high and low volatility regimes. By analyzing the ARCH class,

3



we present estimation best practices for the most widely applied collection of volatility forecasting

models. We suspect that our main conclusions extend to time series models of realized volatility,

including our finding that short term volatility forecasts perform well during crisis periods, that

asymmetric models are superior to symmetric ones, and that frequent re-estimation using long

samples optimizes precision while mitigating the impact of parameter drift.

This paper is related to the vast literature on volatility forecasting. Andersen, Bollerslev,

Christoffersen & Diebold (2006) provide a comprehensive theoretical overview on the topic. An

extensive survey of the literature’s main findings is provided in Poon & Granger (2003, 2005).

Volatility forecasting assessments are commonly structured to hold the test asset and estimation

strategy fixed, focusing on model choice. We take a more pragmatic approach and consider how

much data should be used for estimation, how frequently a model should be re-estimated, and what

innovation distributions should be used. This is done for a range of models. Furthermore, we do

not rely on a single asset or asset class to draw our conclusions. Volatility forecasting metastudies

focus almost exclusively on one day forecasts. Our work draws attention to the relevance of multi-

step forecast performance for model evaluation, especially in crisis periods when volatility levels

can escalate dramatically in a matter of days. Lastly, our forecast evaluation relies on recent

contributions for robust forecast assessment developed in Hansen & Lunde (2005b) and Patton

(2009). Conflicting evidence reported by previous studies is due in part to the use of non-robust

losses, and our assessment addresses this shortcoming.

2 Volatility Forecasting Methodology

2.1 Recursive Forecast Procedure

A time series of continuously compounded returns (including dividends) is denoted {rt}Tt=1, and

Ft denotes the information set available at t. The unobserved variance of returns conditional

on Ft is σ2
t+i|t ≡ Var[rt+i|Ft]. Variance predictions are obtained from a set of volatility models
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M≡ {m1,m2, ...,mM}. Model m can generically be represented as

rt+1 = εt+1

√
h

(m)
t+1 (1)

where h(m)
t+1 is an Ft-measurable function and εt+1 is an iid zero mean/unit variance innovation.

The specification of h(m)
t+1 determines the conditional variance evolution and is typically a function

of the history of returns as well as a vector of unknown parameters to be estimated from the data.

The i-step ahead volatility forecast obtained by model m conditional on Ft is denoted h
(m)
t+i|t.

The real time volatility forecasting procedure is implemented as follows. For each day t in

the forecasting sample, we estimate model m using data ending at or before t, depending on the

frequency of parameter re-estimation. We use the fitted model to then predict volatility at different

horizons (one, five, ten, 15 and 22 days ahead), resulting in a daily volatility forecast path {h(m)
t+i|t}.

This procedure generates a sequence of overlapping forecast paths, each path formulated from

different conditioning information.

The baseline estimation strategy uses all available returns (beginning with 1990) and updates

parameter estimates once per week by maximizing a Gaussian likelihood. We perturb this approach

to determine if alternative estimation strategies can improve forecasting performance. In particular,

we consider using four- and eight-year rolling estimation windows, rather than a growing window

that uses the full post-1990 sample. We also explore re-estimating parameters daily or monthly, in

addition to weekly. Finally, maximum likelihood estimation is performed using both Gaussian and

Student t likelihoods. We report a subset of these results that best highlight the trade-offs faced

in estimation design. Interested readers will find exhaustive comparisons in the appendix of this

work in Brownlees, Engle & Kelly (2011).

2.2 Volatility Models

The five models we consider for h(m)
t+1 in Equation 1 are chosen from the vast literature on GARCH

modeling for their simplicity and demonstrated ability to forecast volatility over alternatives. The

first, GARCH(1,1) (Engle (1982); Bollerslev (1986)), is a natural starting point for model com-
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parison due to its ubiquity and progenesis of alternative models. GARCH describes the volatility

process as

ht+1 = ω + αr2t + βht.

Key features of this process are its mean reversion (imposed by the restriction α + β < 1) and its

symmetry (the magnitude of past returns, and not their sign, influences future volatility).

We also include two asymmetric GARCH models, which are designed to capture the tendency

for volatilites to increase more when past returns are negative. Threshold ARCH (Glosten et al.

(1993)), or TARCH, appends a linear asymmetry adjustment,

ht+1 = ω + (α+ γIrt<c)r
2
t + βht

where I is an indicator equaling one when the previous period’s return is below some threshold c.

The inclination of equity volatilities to rise more when past returns are negative leads to γ > 0.

Exponential GARCH (Nelson (1991)), or EGARCH, models the log of variance,

ln(ht+1) = ω + α(|εt| − E[|εt|]) + γεt + β ln(ht)

where εt = rt/
√
ht. The leverage effect is manifested in EGARCH as γ < 0.

The Nonlinear GARCH (Engle (1990)), or NGARCH, models asymmetry in the spirit of pre-

vious specifications using a different functional device. When γ < 0 the impact of negative news is

amplified relative to positive news,

ht+1 = ω + α(rt + γ)2 + βht.

Finally, asymmetric power ARCH (APARCH), devised by Ding, Engle & Granger (1993),

evolves according to

h
δ/2
t+1 = ω + α(|rt| − γrt)δ + βh

δ/2
t .

Raising the left hand side to 2/δ delivers the variance series. Ding et al. (1993) show that serial

correlation of absolute returns is stronger than squared returns. Hence, the free parameter δ

can capture volatility dynamics more flexibly than other specifications, while asymmetries are
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incorporated via γ. As noted by Hentschel (1995), APARCH nests at least seven other GARCH

specifications.

2.3 Forecast Evaluation

Our measure of predictive accuracy is based on the average forecast loss achieved by a model/strategy/proxy

triplet. A model that provides a smaller average loss is more accurate and thus preferred. Choices

for loss functions are extensive, and their properties vary widely. Volatility forecast comparison can

be tricky because forecasted values must be compared against an ex post proxy of volatility, rather

than its true, latent value. Patton (2009) identifies a class of loss functions that is attractively

robust in the sense that they asymptotically generate the same ranking of models regardless of

the proxy being used. This rank preservation holds as long as the proxy is unbiased and minimal

regularity conditions are met. It ensures that model rankings achieved with proxies like squared

returns or realized volatility correspond to the ranking that would be achieved if forecasts were

compared against the true volatility.

The Patton class is comprised of a continuum of loss functions indexed by a parameter on the

real line. It rules out all losses traditionally used in the volatility forecast literature but two:

QL : L(σ̂2
t , ht|t−k) =

σ̂2
t

ht|t−k
− log

σ̂2
t

ht|t−k
− 1

MSE : L(σ̂2
t , ht|t−k) = (σ̂2

t − ht|t−k)2

where σ̂2
t is an unbiased ex post proxy of conditional variance (such as realized volatility or squared

returns) and ht|t−k is a volatility forecast based on t− k information (k > 0). The quasi-likelihood

(QL) loss, named for its close relation to the Gaussian likelihood, depends only on the multplicative

forecast error, σ̂2
t

ht|t−k
. The mean squared error (MSE) loss depends solely on the additive forecast

error, σ̂2
t − ht|t−k. Both QL and MSE are used in our extensive forecast evaluation reported in

the appendix. However, the summary results that we report here focus on QL losses. There are

a few reasons why we prefer QL for forecast comparison. First, as a result of the fact that QL

depends on the multiplicative forecast error, the loss series is iid under the null hypothesis that
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the forecasting model is correctly specified. MSE, which depends on additive errors, scales with

the square of variance, thus contains high levels of serial dependence even under the null. To see

this, divide MSE by σ̂4
t and note that the resulting quantity is iid under the null. MSE is therefore

an iid process times the square of a highly serially correlated process. While loss functions are

not required to be iid in order to identify successful forecasting models, this trait makes it easier

to identify when a model fails to adequately capture predictable movements in volatility. Second,

suppose that the volatility proxy σ̂2
t can be expressed as σ̂2

t = h0 tηt, where h0 t is the latent true

variance and ηt is a measurement error with unit expected value and variance τ2. The expected

value of MSE is then

E
[
MSE(σ̂2

t , ht|t−k)
]

= E
[
(σ̂2
t − ht|t−k)2

]
= E

[
(σ̂2
t − h0 t + h0 t − ht|t−k)2

]
= E

[
((ηt − 1)h0 t + h0 t − ht|t−k)2

]
= MSE(h0 t, ht|t−k) + τ2h2

0 t,

while the expected value of QL is

E
[
QL(σ̂2

t , ht|t−k)
]

= E

[
σ̂2
t

ht|t−k
− log

σ̂2
t

ht|t−k
− 1
]

= E

[
h0 t

ht|t−k
ηt − log

h0 t

ht|t−k
ηt − 1

]
≈ QL(h0 t, ht|t−k) +

τ2

2
,

where the last line uses a standard Taylor expansion for moments of a random variable. MSE has a

bias that is proportional to the square of the true variance, while the bias of QL is independent of

the volatility level. Amid volatility turmoil, large MSE losses will be a consequence of high volatility

without necessarily corresponding to deterioration of forecasting ability. QL avoids this ambiguity,

making it easier to compare losses across volatility regimes.
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3 Empirical Volatility Forecasting Results

3.1 Data

Daily split- and dividend-adjusted log return data on the S&P 500 index from 1990 to 2008 is

from Datastream. The expanded data set for our large scale forecasting comparison includes three

balanced panels of assets listed in Table 1. We use ten exchange rates, nine domestic sectoral

equity indices, and 18 international equity indices. The sector index data are returns on S&P

500 industry sector SPDR exchange traded funds. International index data are returns on iShares

exchange traded funds that track the MSCI country indices. Inception dates of the sector and

country index exchange traded funds are December 23, 1998 and March 19, 1996, respectively. The

exchange rates dataset contains various exchanges versus the US dollar starting on January 5, 1999

(the introduction of the EURO).

To proxy for true S&P 500 variance, we use daily realized volatility for the S&P 500 SPDR

exchange traded fund. We construct this series from NYSE-TAQ intra-daily mid-quotes (filtered

with procedures described in Brownlees & Gallo (2006) and Barndorff-Nielsen, Hansen, Lunde &

Shephard (2009)). We sample every dtht mid-quote (tick time sampling), where dt is chosen such

that the average sampling duration is five minutes. Let pt,i (i = 1, ..., It) denote the series of log

mid-quote prices on day t. Our realized volatility proxy is the “vanilla” (Andersen et al. (2003))

estimator constructed using sums of intra-daily squared returns, σ̂2
rv t =

∑It
i=2(pt i − pt i−1)2. The

overnight return is omitted, as is often done in the literature.

The out-of-sample forecast horizon covers 2001 to 2008 and contains periods of both very low

volatility and severe distress. Figure 1 shows the time series plot of daily realized volatility (in

annualized terms) for the S&P 500 index alongside one-day ahead predictions of a TARCH model.

US equity volatility reached its peak during the financial turmoil of fall 2008 with levels of realized

volatilities exceeding 100%. This period is also characterized by high volatility of volatility: As

of early September 2008, realized volatility was near 20%, and more than quadrupled in less than

three months.
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Asset Class Assets Begin Date

Exchange Rates Australian Dollar, British Pound, Canadian Dollar, EURO,

Indian Rupee, Honk Kong Dollar, Japanese Yen, South Ko-

rean Won, Swiss Franc, Thai Baht

1999-01-05

Equity Sectors Consumer Discretionary, Consumer Staples, Energy, Finan-

cials, Healthcare, Industrials, Materials, Technology, Utilities

1998-12-23

International Equities Singapore, Netherlands, Japan, Australia, Belgium, Canada,

Germany, Hong Kong, Italy, Switzerland, Sweden, Spain,

Mexico, UK, World, Emerging Markets, BRIC

1996-03-19

Table 1: Asset list. For each asset class, the table reports the list of assets used in the forecasting application and

the first date of the sample.

Figure 1: S&P 500 TARCH one step ahead volatility forecasts (solid line) and realized volatility (crosses). Volatilities

are expressed in annualized terms.
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3.2 Forecasting S&P 500 Volatility

We begin evaluating estimation strategies by assessing out-of-sample volatility forecast losses for

the S&P 500 index. Table 2 summarizes the extensive analysis provided in our appendix and

reports forecasting results for each of our five GARCH specifications using the QL loss function

with squared return (r2) and realized volatility (rv) proxies over a range of forecast horizons. We

present the base estimation strategy (using all available returns beginning in 1990 and updating

parameter estimates once per week by maximizing a Gaussian likelihood). QL losses based on rv

are substantially smaller than those based on r2 due to rv’s improved efficiency. However, results

suggest that using a sufficiently long out-of-sample history leads to comparable findings despite the

choice of the proxy. The labels beneath each loss indicate that the base strategy was significantly

improved upon by modifying estimation with Student t innovations (S), medium estimation window

(WM), long estimation window (WL), monthly estimation update (UM) or daily estimation update

(UD). The significance of the improvement is assessed using a Diebold-Mariano Predictive Ability

test. The test compares the forecast loss time series of the base strategy and the ones obtained

by the various modifications: if the mean of the loss differential is significantly different from zero,

than the null of equal predictive ability is rejected.1 The appendix presents evidence of model

parameter instability, highlighting the relevance of choices for amount of data used in estimation

and frequency of re-estimation. Our analysis suggests that the longest possible estimation window

gives the best results, but suggest re-estimating at least once per week to counteract the effects of

parameter drift. While there are exceptions (as expected from a comparison with a vast number

of permutations), the comprehensive conclusion from this analysis is that there are no systematic

large gains to be had by modifying the base procedure along the alternatives considered. A more

detailed discussion of these and subsequent results is given in the appendix.
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Vol. Proxy: r2 Vol. Proxy: rv

Model 1 d 1 w 2 w 3 w 1 m 1 d 1 w 2 w 3 w 1 m

GARCH 1.460 1.481 1.520 1.574 1.645 0.273 0.310 0.343 0.373 0.414

UD S

TARCH 1.415 1.442 1.478 1.547 1.624 0.243 0.289 0.328 0.368 0.415

S S S WM WM UD

EGARCH 1.420 1.458 1.505 1.592 1.684 0.234 0.282 0.320 0.365 0.413

S S S UM UM UM

APARCH 1.417 1.446 1.485 1.557 1.633 0.249 0.299 0.340 0.385 0.435

S S S WM S WM UD S WD UD S WM S

NGARCH 1.422 1.459 1.498 1.574 1.659 0.244 0.296 0.337 0.380 0.432

S UD S S UD UD

Table 2: Estimation Strategy Assessment. For each model and volatility proxy, the table reports out-of-sample QL

losses at multiple horizons using the base estimation strategy. The labels underneath each loss mean that the base

strategy was significantly improved upon by using Student t innovations (S), medium estimation window (WM), long

estimation window (WL), monthly estimation update (UM) or daily estimation update (UD).

2001-2008

Vol. Proxy: r2 Vol. Proxy: rv

Model 1 d 1 w 2 w 3 w 1 m 1 d 1 w 2 w 3 w 1 m

TARCH 1.415 1.442 1.478 1.547 1.624 0.243 0.289 0.328 0.368 0.415

Fall 2008

TARCH 1.461 1.560 1.985 2.311 2.875 0.304 0.353 0.590 0.672 1.380

Table 3: S&P 500 volatility prediction performance of the TARCH model from 2001 to 2008 and in Fall 2008. For

each volatility proxy the table reports the out-of-sample QL loss at multiple horizons for the TARCH(1,1) model.
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3.3 Direct Comparison of GARCH Models

Next, we directly compare GARCH model forecasts during the full sample and during the turmoil of

fall 2008. Representative results regarding forecast accuracy across multiple horizons and volatility

regimes are shown in Table 3. Here we report out-of-sample QL losses for each volatility proxy

using the TARCH(1,1) model. The appendix provides detailed results of this comparison across all

models. For the full sample, asymmetric specifications provide lower out-of-sample losses, especially

over one day and one week. At the one-month horizon, the difference between asymmetric and

symmetric GARCH becomes insignificant as recent negative returns are less useful for predicting

volatility several weeks ahead. When losses use squared return as proxy, results favor TARCH,

while realized volatility selects EGARCH. The discrepancy should not be overstated, however, as

the methods do not significantly outperform each other. Model rankings appear stable over various

forecasting horizons.

Table 3 also shows that during the extreme volatility interval from September 2008 through

December 2008, forecast losses at all horizons are systematically larger than in the overall sample.

Recall that QL is unaffected by changes in the level of volatility, so that changes in average losses

purely represent differences in forecasting accuracy. One-step ahead losses during fall 2008 are

modestly higher, while at one month QL losses are twice as large based on the squared return proxy

and four times as large using realized volatility. The important finding from detailed cross-model

comparisons in the appendix is that conclusions about model ranking remain largely unchanged

during the crisis.

3.4 Volatility Forecasting Across Asset Classes

Table 4 contains TARCH forecasting results for exchange rates, S&P 500 equity sector indices

and international equity indices (see the detailed asset list in Table 1). This analysis uses the QL

loss with squared returns as proxy. Volatility forecast losses are averaged across time and over
1 The Superior Predictive Ability test (SPA) or Model Confidence Set (MCS) techniques could also be used to

carry out this type of exercise (cf. Hansen (2005) and Hansen, Lunde & Nason (2003)).
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all assets in the same class over the full sample and the crisis subsample. Detailed cross-model

comparisons from the crisis sample are provided in the appendix. We find strong evidence of

volatility asymmetries in international and sectoral equity indices with TARCH as the universally

dominant specification. The base GARCH model is a good descriptor of exchange rate volatility

over the full sample, consistent with Hansen & Lunde (2005a).

Interestingly, asymmetric models appear to improve exchange rate volatility forecasts during the

2008 crisis. This is consistent with a flight-to-quality during the crisis, leading to rapid appreciation

of the US dollar amid accelerating exchange rate volatility. For all asset classes, one-day ahead

losses are virtually unchanged from those during the full sample, while one month QL losses are

magnified by a factor of nearly two. In general, results corroborate our findings for the S&P 500.

3.5 Interpreting Forecast Losses from an Economic Perspective

Statistically testing the differences in forecast error losses across models and methods is in itself

economically meaningful because it captures how consistently one approach dominates another,

which in turn is important in pricing and risk management. However, QL and MSE losses do not

provide direct economic interpretations for the magnitudes of differences across approaches.

The relative magnitude of forecast errors implied by the average losses from different models are

useful for quantifying the economic importance of differences in forecast performance. To illustrate,

consider two calibrated numerical examples. These examples translate differences in QL averages

across forecasting models into i) differences in value-at-risk (VaR) forecast errors and ii) option

pricing errors. We show that the relative size of forecast errors across models provides an accurate

description of relative magnitudes of both value-at-risk errors and option pricing errors based on

alternative models. We assume throughout the illustration that the true volatility of daily returns

is 0.0146 (the daily volatility of the S&P 500 index over the 1990-2008 sample).

To calculate economic magnitudes, we begin by considering the typical forecast implied by our
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reported average forecast losses for each model. To do so, we solve the equation

.01462

x2
− log

(
.01462

x2

)
− 1 = average QL loss.

This equation is solved by two different volatility forecasts, one an underestimate and one an

overestimate, that are positive and located asymmetrically around the true volatility of 0.0146.2

The larger the average loss, the larger the absolute error |x − 0.0146|. Based on the reported

average losses of 0.247 and 0.243 for the GARCH and TARCH models (using the rv proxy), we find

xGARCH,under = 0.0105 and xGARCH,over = 0.0222, and xTARCH,under = 0.0107 and xTARCH,over =

0.0217. The reduction in volatility forecast errors achieved by moving from GARCH to TARCH is

calculated as

Volatility error reductioni = 1−
∣∣∣∣xTARCH,i − 0.0146
xGARCH,i − 0.0146

∣∣∣∣ , i ∈ {under, over}.
Based on our estimated average losses, TARCH improves over GARCH 4.3% to 7.7% in volatility

level forecasts.

Each of these x values implies a one day ahead 1% value-at-risk return (calculated using the

inverse cumulative distribution function of a Gaussian random variable, Φ−1(0.01;µ, σ)). The

value-at-risk error reduction from using TARCH rather than GARCH is calculated as

VaR error reductioni = 1−
∣∣∣∣Φ−1(0.01; 0, xTARCH,i)− Φ−1(0.01; 0, 0.0146)
Φ−1(0.01; 0, xGARCH,i)− Φ−1(0.01; 0, 0.0146)

∣∣∣∣ , i ∈ {under, over}.
The typical VaR forecast error reduction of TARCH relative to GARCH of 4.3% and 7.7% – which

is equal to the volatility level forecast improvement to the nearest tenth of a percent.

We next consider impled option pricing errors from alternative models. Continuing from the

previous example, we focus on one-day forecasts, and therefore on the value of an at-the-money

call option with one day left until maturity. For simplicity, assume that the Black-Scholes model

correctly prices options at this horizon, that the risk free rate is 1% per annum, and that the value
2Because QL is an asymmetric loss function, we consider the effect of volatility underestimates and overestimates

separately. The two numbers reported in each comparison represent the effects of volatility underestimates and

overestimates that each generate a loss equal to the appropriate average QL from Table 2.
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of the underlying (and the strike price) are normalized to one. From above, each x value implies the

price of an at-the-money call option according to the Black-Scholes model. Denoting the call option

price as BS(σ) = BS (σ, rf = 1% p.a., TTM = 1/365, S = 1,K = 1), we calculate the reduction in

call option mispricing using TARCH relative to GARCH as

BS error reductioni = 1−
∣∣∣∣BS(xTARCH,i)−BS(0.0146)
BS(xGARCH,i)−BS(0.0146)

∣∣∣∣ , i ∈ {under, over}.
The option pricing error reduction of TARCH relative to GARCH is 4.3% to 7.7% – again equal to

the volatility level forecast improvement to the nearest tenth of a percent.

4 Did GARCH predict the Crisis of 2008?

On November 1, 2008, the New York Times3 declared October to be “the most wild month in the

80-year history of the S&P 500.... In normal times, the market goes years without having even one

[4% move]. There were none, for instance, from 2003 through 2007. There were three such days

throughout the 1950s and two in the 1960s. In October, there were nine such days.” The economic

fallout from this tumultuous period is now well understood, including destruction of over 25% of

the US capital stock’s value. The reaction by many policy makers, academics and the popular press

was to claim that economic models had been misused or were simply incorrect. Former Federal

Reserve Chairman Alan Greenspan told one such story of misuse to the Committee of Government

Oversight and Reform (Jan. 2, 2009), concluding that risk models “collapsed in the summer of

last year because the data inputted into the risk management models generally covered only the

past two decades, a period of euphoria. Had instead the models been fitted more appropriately to

historic periods of stress, capital requirements would have been much higher and the financial world

would be in far better shape today.” Andrew Haldane, Executive Director for Financial Stability

at the Bank of England, arrived at a starker conclusion about risk management models during the

crisis (Feb. 13, 2009): “Risk management models have during this crisis proved themselves wrong

in a more fundamental sense. These models were both very precise and very wrong.”
3The New York Times,“A Monthlong Walk on the Wildest Side of the Stock Market.”
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2001-2008

Exchange Rates Equity Sectors International Equities

Model 1 d 1 w 2 w 3 w 1 m 1 d 1 w 2 w 3 w 1 m 1 d 1 w 2 w 3 w 1 m

TARCH 1.976 2.038 2.093 2.118 2.138 2.236 2.266 2.313 2.356 2.412 2.253 2.289 2.337 2.389 2.464

Fall 2008

TARCH 1.925 2.081 2.454 2.636 3.244 2.217 2.120 2.523 2.834 3.870 2.153 2.054 2.574 3.349 4.250

Table 4: We report the out-of-sample loss for various asset classes at multiple horizons using the TARCH(1,1)

model for the full 2001-2008 sample and fall 2008 subsample.

1d 1w 2w 3w 1m

Jan. 1926 to Dec. 2008 1.5 1.6 1.7 1.7 1.8

Jan. 2003 to Aug. 2008 1.4 1.5 1.5 1.5 1.5

Sep. 2008 to Dec. 2008 1.4 1.6 2.1 2.8 4.1

Table 5: In-sample QL losses. The table reports average QL losses of the TARCH model with Student t innovations

in the samples i) January 1926 to December 2008, ii) January 2003 to August 2008 and iii) September 2008 to

December 2008. The variance proxy is the squared return.
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In this section we attempt to put the forecasting results of the previous section in perspective and

to ask the following question: Did volatility models, fundamental inputs for risk management tools,

genuinely fail during the crisis? We first address this question with a simple thought experiment:

How often would we observe forecast errors as large as those observed during the crisis if the world

obeys a GARCH model? Our answer takes a simple approach. First, we estimate a Gaussian

TARCH model using the full sample of daily market returns from 1926 to 2008, and calculate

multiple horizon in-sample forecast errors. Table 5 presents average daily QL losses during the

full sample, during the low volatility 2003-2007 subsample, and during the fall 2008 crisis sample.

Average losses at all horizons in the full sample hover around 1.7, and are very similar to the losses

experienced in the low volatility interval. As we turn to average crisis losses, we see that one step

ahead losses are virtually the same as the rest of the sample. The severity of the crisis only becomes

noticeable at longer forecast horizons. The 22-day ahead forecast loss appears to double during the

crisis.

From the historical distribution of losses, we next calculate the probability of observing losses

at least as large as those seen during the crisis over a 4 months period (that is, the length of our

crisis sample). To do this, we divide our 1926 - 2008 sample in a sequence of overlapping 4 months

windows. In each the of these windows, we compute the forecast losses at the different forecasting

horizons of interest. Finally, for each forecasting horizon we compute the proportion periods in

which the losses where larger than the ones observed in the Fall of 2008. These are reported in

the first row of Table 6. The historical probability of observing a one-day loss at least as large as

that observed during the crisis is 54.5%. That is, the average one-step crisis loss falls in the center

of the empirical distribution. For longer horizons, the historical exeedence probabilities decrease

quickly. At a 22-day horizon, losses at least as large as those observed during the crisis occurred

only 1.3% of time between January 1926 and August 2008.

As a second approach to the question, we simulate data from the TARCH model using param-

eters estimated over the full sample using Student t innovations. In each simulation we generate

82 years of returns then estimate the correctly specified model (estimation builds sampling error
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into Monte Carlo forecasts in analogy to our empirical procedure). Using estimated parameters, we

construct in-sample forecasts at multiple horizons and calculate average losses. Next, we average

the daily losses in the last four months of each simulated sample. Simulations are repeated 5,000

times and produce a simulated distribution of average daily losses. Finally, we count the number of

simulations in which losses meet or exceed crisis losses observed in the data. Results are reported

in the last row of Table 6. Under the null model, the probability of observing one step ahead losses

greater than the 1.4 value in the crisis is 53.8%. This exceedence probability drops to 2.0% at the

22-day horizon. The cumulative loss probabilities implied by the historical record and simulations

under the null model tell the same story. In terms of one-step ahead forecasts, the crisis sample

was a typical season in a GARCH world. In contrast, one-month forecast losses were indeed aggra-

vated during the crisis, but do not fall outside a 99% confidence interval. We have also performed

this analysis using the other GARCH specifications used in the forecasting exercise. Interestingly,

all the specification that allow for asymmetric effects (that is, all models but the plain GARCH)

deliver analogous findings.

The nature of volatility during the crisis seems to be captured by the facts that (i) crisis forecasts

deteriorated only at long horizons, and (ii) over one-day, errors were no larger than a typical day

in the full 80 year sample. On a given date during the crisis, conditioning on poor returns up until

that day resulted in well-informed forecasts for the next day, and thus mild average one-day losses.

However, this conditioning provided little help in predicting abnormally long strings of consecutive

negative return days that occurred during the crisis. Over ally, the crisis does not lead us to reject

standard time series models used for volatility analysis as fundamentally flawed. However, it does

indeed remind us that episodes of turmoil like the ones observed in the crisis do not have a negligible

probability of occurring. We believe that the new challenge that has been raised is the development

of effective ways to manage appropriately long run risks. Most risk management practice is focused

on short run measures that are intrinsically myopic. Indeed, the extremely low levels of volatility

observed in 2006-2007 induced many institutions to take excessive risk, and this turned out to be a

worsening factor during the crisis. Better long run risk management would provide a more useful
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assessment of the actual level of downside exposure of an asset.

5 Conclusion

Volatility forecasting assessments are commonly structured to hold the test asset and estimation

strategy fixed, focusing on model choice. We take a pragmatic approach and consider how much

data should be used for estimation, how frequently a model should be re-estimated, and what

innovation distributions should be used. Our conclusions consider data from a range of asset

classes, drawing attention to the relevance of multi-step ahead forecast performance for model

evaluation. We separately consider performance in crisis periods when volatility levels can escalate

dramatically in a matter of days.

We find that asymmetric models, especially TARCH, perform well across methods, assets and

subsamples. Models perform best using the longest available data series. Updating parameter

estimates at least weekly counteracts the adverse effects of parameter drift. We find no evidence

that the Student t likelihood improves forecasting ability despite its potentially more realistic

description of return tails. Preferred methods do not change when forecasting multiple periods

ahead.

An exploration into the degree of extremity in volatility during the 2008 crisis reveals some

interesting features. First and foremost, soaring volatility during that period was well described

by short horizon forecasts, as seen by mean forecast losses commensurate with historical losses and

expected losses under the null. At longer horizons, observed losses have historical and simulated

p-values of 1% to 2%. We conclude that while multi-step forecast losses are large and in the tail

of the distribution, they cannot be interpreted as a rejection of GARCH models, and would have

fallen within 99% predicted confidence intervals.
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1d 1w 2w 3w 1m

Historical 54.5 38.2 12.3 3.6 1.3

Simulated 53.8 35.4 11.4 3.9 2.0

Table 6: QL loss exceedence probabilities September 2008 to December 2008. The table reports the historical and

simulated probabilities of observing losses greater than or equal to those observed in the September 2008 to December

2008 sample.
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